On a Conjecture of Birch and Swinnerton-Dyer

نویسندگان

  • Wentang Kuo
  • Ram Murty
چکیده

Let E/Q be an elliptic curve defined by the equation y 2 = x 3 + ax + b. For a prime p, p ∤ ∆ = −16(4a 3 + 27b 2) = 0, define N p = p + 1 − a p = |E(F p)|. As a precursor to their celebrated conjecture, Birch and Swinnerton-Dyer originally conjectured that for some constant c, p≤x,p∤∆ N p p ∼ c(log x) r , x → ∞. Let α p and β p be the eigenvalues of the Frobenius at p. Define ˜ c n =    α k p +β k p k n = p k , p is a prime, k is a natural number, p ∤ ∆. 0 otherwise.. and˜C(x) = n≤x˜c n. In this paper, we establish the equivalence between the conjecture and the conditioñ C(x) = o(x). The asymptotic condition is indeed much deeper than what we know so far or what we can know under the analogue of the Riemann hypothesis. In addition, we provide an oscillation theorem and an Ω theorem which relate to the constant c in the conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the elliptic curves of the form $ y^2=x^3-3px $

By the Mordell-Weil theorem‎, ‎the group of rational points on an elliptic curve over a number field is a finitely generated abelian group‎. ‎There is no known algorithm for finding the rank of this group‎. ‎This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves‎, ‎where p is a prime‎.

متن کامل

The Birch-swinnerton-dyer Conjecture

We give a brief description of the Birch-Swinnerton-Dyer conjecture which is one of the seven Clay problems.

متن کامل

ON RUBIN’S VARIANT OF THE p-ADIC BIRCH AND SWINNERTON-DYER CONJECTURE

We study Rubin’s variant of the p-adic Birch and Swinnerton-Dyer conjecture for CM elliptic curves concerning certain special values of the Katz two-variable p-adic L-function that lie outside the range of p-adic interpolation.

متن کامل

Computational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves

We describe theorems and computational methods for verifying the Birch and Swinnerton-Dyer conjectural formula for specific elliptic curves over Q of analytic ranks 0 and 1. We apply our techniques to show that if E is a non-CM elliptic curve over Q of conductor ≤ 1000 and rank 0 or 1, then the Birch and Swinnerton-Dyer conjectural formula for the leading coefficient of the L-series is true for...

متن کامل

Visible Evidence for the Birch and Swinnerton-dyer Conjecture for Modular Abelian Varieties of Analytic Rank Zero Amod Agashe and William Stein, with an Appendix by J. Cremona and B. Mazur

This paper provides evidence for the Birch and Swinnerton-Dyer conjecture for analytic rank 0 abelian varieties Af that are optimal quotients of J0(N) attached to newforms. We prove theorems about the ratio L(Af , 1)/ΩAf , develop tools for computing with Af , and gather data about certain arithmetic invariants of the nearly 20, 000 abelian varieties Af of level ≤ 2333. Over half of these Af ha...

متن کامل

On the rank of elliptic curves

The paper describes an approach that may lead to a proof that the Birch and Swinnerton-Dyer conjecture fails.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005